Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev. méd. Chile ; 150(5)mayo 2022.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1409847

ABSTRACT

Background: Atmospheric pollution is a problem that causes great concern and health risks for the population and the earth, as it affects developed countries and third world countries. Locally, there are no studies that prove the fulfillment level of the restriction about the usage of residential firewood, considering that since 2014 there is a procedure called "The Environmental Decontamination Plan" in Valdivia (PDAV). Aim: To determine the fulfillment level of the restriction about residential firewood and its related factors. Material and Methods: The population study were 594 homes that were assigned randomly and proportionally according to 2 territorial areas (A and B) established in the PDAV. The sample's characteristics were described, comparison techniques were applied by subgroups (sociodemographic, home's structures and humidity's perception and percentage of the firewood) to identify factors related mainly with the fulfillment of measurements about firewood usage. Results: 52% of households do not comply with the residential firewood use restriction measure, having sociodemographic factors related with this failure, such as schooling, health insurance and home structure. Besides, it is noted that the knowledge level of PDAV is associated with the accomplish level of restriction measures. When people know more about PDAV, there is a higher proportion of accomplishment. Conclusion: In more than half of the households, the restriction on the use of woodstove is not complied. The lack of knowledge of the population about the PDAV directly influences its compliance, which requires strategies to promote adherence to this program.

2.
Santa Tecla, La Libertad; ITCA Editores; ene. 2020. 74 p. ^c28 cm.ilus., graf..
Monography in Spanish | LILACS, BISSAL | ID: biblio-1222793

ABSTRACT

Se construyeron e instalaron en coordinación con la UTEC, 3 estaciones de monitoreo de calidad del aire en ITCA-FEPADE Santa Tecla, San Miguel y La Unión. Estos dispositivos miden el nivel de contaminación del aire por material particulado de 2.5 y 10 micras de diámetro en las zonas donde están instalados. ITCA-FEPADE desarrolló un software de interpretación y predicción de dato de contaminación ambiental con Big Data y Machine Learning. Los datos de las estaciones son capturados en formato Big Data, los cuales son procesados por medio de una plataforma web diseñada, en donde se grafica el estado de la calidad del aire según la zona seleccionada. Se desarrolló además, un algoritmo de Machine Learning, el cual realiza una predicción de la calidad del aire para el término de un mes. Según aumente la cantidad de muestras así será el potencial de predicción para un día, semana, mes o año. La aplicación de los resultados de este proyecto con la construcción de más estaciones de monitoreo, permitirá lograr una cobertura a nivel nacional y medir con más detalle la calidad del aire que se respira en El Salvador, logrando así mejorar la toma de decisiones respecto al combate de la contaminación del aire y de las enfermedades respiratorias


In coordination with Universidad Tecnológica de El Salvador (UTEC), 3 air quality monitoring stations were built and installed at Escuela Especializada en Ingeniería ITCA-FEPADE Santa Tecla, San Miguel and La Unión. These devices measure the level of air pollution by particulate matter of 2.5 and 10 microns in diameter in the areas where they are installed. ITCA-FEPADE developed a software for interpretation and prediction of environmental pollution data with Big Data and Machine Learning. The data from the stations is captured in Big Data format, which is processed through a designed web platform, where the state of air quality is plotted according to the selected area. In addition, a Machine Learning algorithm was developed, which makes a prediction of air quality for the term of one month. As the number of samples increases, so will the prediction potential for a day, week, month or year. The application of the results of this project with the construction of more monitoring stations, achieve national coverage and measure in more detail the quality of the air that is breathed in El Salvador, thus improving decision-making regarding the combat of air pollution and respiratory diseases


Subject(s)
Software , Air Quality Control , Total Quality Management , Air Pollution , Monitoring Stations , Environmental Monitoring , Environmental Pollution
3.
Environmental Health and Preventive Medicine ; : 66-66, 2020.
Article in English | WPRIM | ID: wpr-880302

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new zoonotic agent that emerged in December 2019, causes coronavirus disease 2019 (COVID-19). This infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. SARS-CoV-2 spreads primarily via respiratory droplets during close person-to-person contact in a closed space, especially a building. This article summarizes the environmental factors involved in SARS-CoV-2 transmission, including a strategy to prevent SARS-CoV-2 transmission in a building environment. SARS-CoV-2 can persist on surfaces of fomites for at least 3 days depending on the conditions. If SARS-CoV-2 is aerosolized intentionally, it is stable for at least several hours. SARS-CoV-2 is inactivated rapidly on surfaces with sunlight. Close-contact aerosol transmission through smaller aerosolized particles is likely to be combined with respiratory droplets and contact transmission in a confined, crowded, and poorly ventilated indoor environment, as suggested by some cluster cases. Although evidence of the effect of aerosol transmission is limited and uncertainty remains, adequate preventive measures to control indoor environmental quality are required, based on a precautionary approach, because COVID-19 has caused serious global damages to public health, community, and the social economy. The expert panel for COVID-19 in Japan has focused on the "3 Cs," namely, "closed spaces with poor ventilation," "crowded spaces with many people," and "close contact." In addition, the Ministry of Health, Labour and Welfare of Japan has been recommending adequate ventilation in all closed spaces in accordance with the existing standards of the Law for Maintenance of Sanitation in Buildings as one of the initial political actions to prevent the spread of COVID-19. However, specific standards for indoor environmental quality control have not been recommended and many scientific uncertainties remain regarding the infection dynamics and mode of SARS-CoV-2 transmission in closed indoor spaces. Further research and evaluation are required regarding the effect and role of indoor environmental quality control, especially ventilation.


Subject(s)
Humans , Aerosols , Air Pollution, Indoor/prevention & control , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/transmission , Crowding , Environment, Controlled , Pandemics/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Ventilation
4.
São Paulo; s.n; 2018. 100 p
Thesis in Portuguese | LILACS, BDENF | ID: biblio-1396048

ABSTRACT

Introdução: Recomendações nacionais (RDC ANVISA 15/2012; 50/2002) e internacionais determinam que as áreas destinadas à limpeza dos produtos para saúde (PPS) no Centro de Material e Esterilização (CME) mantenham um diferencial de pressão negativo do ar ambiente (BRASIL, 2012; AAMI, 2006; ASHARE, 2013). Entretanto, essa recomendação, até o momento, não está sustentada por estudos de alto rigor científico. Embora não houvessem justificativas explicitadas para tal recomendação, presume-se que seja prioritariamente pelo risco de transferência aérea de microrganismos, da área de limpeza para as áreas adjacentes, configurando-se em risco ocupacional. Objetivo: Avaliar o impacto da presença da pressão negativa na área de limpeza do CME mediante a avaliação da qualidade microbiológica do ar desse setor e da área de preparo dos PPS. Método: Foram comparadas amostras microbiológicas do ar coletadas da sala de limpeza (área suja) e da sala de preparo (área limpa) de dois CME classe II de um mesmo hospital localizado na cidade de São Paulo: com e sem sistema de pressão negativa do ar na área de limpeza, este último com sistema de condicionamento do ar centralizado. Como controle, foram realizadas coletas do ar exterior ao hospital. Para obter amostras microbiológicas, foi utilizado o amostrador air six-stage Andersen, com os seguintes meios de cultura seletivos e não seletivo: agar sangue, agar sabouraud, Lowenstein jensen e agar legionella. Durante a coleta do ar, foram verificadas as seguintes variáveis: temperatura e a umidade relativa dos ambientes, número de pessoas presentes e equipamentos sendo utilizados na limpeza. Após as coletas, as amostras foram encaminhadas ao laboratório de ensaios microbiológicos da escola de enfermagem da Universidade de São Paulo, onde permaneceram em estufa microbiológica regulada a 35 ± 2ºC. Os dias de incubação foram específicos para recuperação pretendida de cada grupo microbiano quais sejam: bactérias vegetativas - incluindo Legionella, Mycobacterium tuberculosis e fungos. As placas com crescimento positivo foram submetidas a identificação do gênero e/ou espécie, por meio das características fenotípicas e reações específicas, pelo laboratório de microbiologia da Santa Casa de São Paulo. As amostras, tanto do CME com pressão negativa como naquele sem, foram coletas em quintuplicata. Resultados: a concentração de bioaerossóis na área da limpeza no CME sem pressão negativa e da área de preparo foi de 273,15 e 206,71 UFC/m3 respectivamente, enquanto, no CME com pressão negativa foi de 116,96 UFC/m3 na sala da limpeza e 131,10 na de preparo. Comparando a quantidade média de colônias isoladas dos CME estudados, a diferença foi significativamente menor (p=0,01541) no CME com pressão negativa. A relação I/E, onde I é a quantidade de fungos no ambiente interior e a quantidade de fungos no ambiente exterior, no CME com pressão negativa, na sala de limpeza foi de 0,5 e na sala de preparo de 0,58. No CME sem pressão negativa, a relação foi de 0,8 e 0,6, respectivamente, na sala de limpeza e preparo, ambos abaixo do padrão de referência, que deve ser 1,5, atualmente estabelecido pela resolução nº 9/2003 da ANVISA que dispõe sobre referenciais de qualidade do ar interior, em ambientes climatizados artificialmente de uso público e coletivo. Em nenhum dos CME foram recuperados Mycobacterium tuberculosis ou Legionella do ar. Os microrganismos identificados foram Penicillium spp, Aspergillus niger, Rhodotorula spp., Bacillus subtilis, e Micrococcus spp., todos considerados como não apresentando riscos à saúde em imunocompetentes. Conclusão: Os achados da presente investigação evidenciaram que o sistema de pressão negativa na sala de limpeza do CME contribuiu para redução quantitativa de bioaerossóis, tanto nesse ambiente como na sala de preparo. Entretanto, mesmo no CME sem esse sistema de tratamento do ar na sala de limpeza, a concentração de bioaerossóis foi menos da metade do padrão referencial estabelecido pela resolução nº 9/2003 da ANVISA, em que o valor máximo permitido deve ser 750 UFC/m3 de fungos. Ressalta-se que a quantidade e tipo de microrganismos existentes em qualquer ar ambiente é circunstancial, instável e principalmente dependente dos disseminadores microbianos presentes no local, sejam pessoas ou atividades. Nesse sentido, não se condena conclusivamente CME que não dispõe de pressão negativa na sala de limpeza configurando risco ocupacional.


Introduction: National (RDC ANVISA 15/2012) and international guidelines recommend that areas for cleaning medical devices in the Material and Sterilization Center maintain a negative differential ambient air pressure (BRAZIL, 2012; AAMI, 2006; ASHARE, 2013). However, this recommendation, so far, has not been supported by highly scientifically rigorous studies. Although there are no explicit justifications for such recommendations, it can be assumed that they are grounded on the risk of airborne microorganism contamination from the cleaning area to adjacent ones, which constitutes occupational risk. Objective: to evaluate the impact of negative air pressure on the microbiological quality of the air in the Material and Sterilization Center area where medical devices are cleaned and in the adjoining preparation room. Methods: Microbiological air samples were collected from the room where medical devices are cleaned (also called dirty room) and from the room where these devices are prepared (clean room) at two class II Material and Sterilization Center in the same hospital, located in the city of São Paulo: with and without a negative air pressure system in the cleaning room; the latter with central air conditioning. As a control, outdoor air samples were collected. To obtain microbiological air samples, Andersen six-stage air sampler was used, with the following selective and non-selective culture media: blood agar, sabouraud agar, Lowenstein Jensen and agar legionella. During air collection, the following variables were controlled: temperature and air relative humidity in the rooms, number of people present in the sites and equipment used for the cleaning. After the collection, the samples were sent to the Laboratory of Microbiological Trials of the Nursing School of the University of São Paulo, where they remained in a microbiological oven at a temperature of 35ºC ± 2. The incubation period was specific for the intended recovery of each microbial group: vegetative bacteria including Legionella and Mycobacterium tuberculosis and fungi. Identification of microorganisms` genus and / or species was carried out according to their phenotypic characteristics at the Microbiology Laboratory of the Santa Casa Hospital in São Paulo. The samples, in both Material and Sterilization Center, the one with negative pressure and the one without, were collected in a five-fold sample. Results: The concentration of bioaresols in the cleaning room and preparation area without negative pressure was 273.15 and 206.71 UFC / m3, respectively, while in the Material and Sterilization Center with negative pressure the concentration of bioaerosols was 116.96 CFU / m3 in the cleaning room, and 131.10 in the preparation area. The number of isolated colonies in the negative pressure Material and Sterilization Center was significantly lower (p = 0.01541). The I / E ratio, where I is the amount of fungi in the indoor environment, and E is the amount of fungi in the outdoor environment, in the cleaning room of the negative pressure Material and Sterilization Center was 0.5, and in the preparation area, 0, 58; as for the Material and Sterilization Center without negative pressure, in the cleaning and in the preparation area, the ratio was 0.8 and 0.6, respectively, both below the reference standard currently established by ANVISA Resolution No. 9/2003, which determines indoor air quality standards at artificially climatized environments for public use. In neither of the studied Material and Sterilization Center were Mycobacterium tuberculosis or Legionella recovered from the air. The microorganisms identified were Penicillium spp, Aspergillus niger, Rhodotorula spp., Bacillus subtilis, and Micrococcus spp., all of which are considered harmless to immunocompetent subjects. Conclusion: The findings showed that the negative pressure system in the Material and Sterilization Center cleaning room contributed to the quantitative reduction of bioaerosols, both in this area and in the adjoining preparation area. However, even in the Material and Sterilization Center whose cleaning room did not have this system the concentration of bioaerosols was less than half the reference standard established by ANVISA Resolution No. 9/2003. It should be stressed that the quantity and type of microorganisms in any ambient air is circunstancial, instable and, especially dependent on microbe disseminators in the site, whether they are people or activities. Therefore, it cannot be conclusively concluded that Material and Sterilization Center that do not have negative pressure in their cleaning rooms offer occupational risk.


Subject(s)
Sterilization , Nursing , Aerosols , Air Pollution
SELECTION OF CITATIONS
SEARCH DETAIL